

NPxx

NP10, NP5, NP2

CONTROL

SPECIFICATIONS

Communication Protocol

TCP/IP and RS485

Document Revision 2.0 (22nd Feb 2021)

NPxx
CONTROL SPECIFICATIONS: Communication Protocol

 P a g e 2 | 24

Revision History

Revision Date Software
Version

Description of Change

2.0 22nd Feb 2021 4.0.0
Improved “Play audio track” and “Play playlist”.
Added “SUSPENSION”, “DATETIME”, “INFOPLAY”, “Virtual keypad”
And “Delete File”

1.1 10th Dec 2017 3.1.1
User account , TCP-IP communication port, Request-Response
protocol, RS485

1.0 09th Nov 2017 3.0.2 Initial release

NPxx
CONTROL SPECIFICATIONS: Communication Protocol

 P a g e 3 | 24

Introduction

This document describes how to use the communication protocol to control the NPxx audio device
remotely.
The protocol is compliant with JSON notation, and any command sent to the NPxx have a response
from it.
To know the JSON notation see this website: www.json.org.

Protocol Specifications

Request:
{“req”: { <CmdType> :{ <Cmd> }}}

Response:
{“res”: { <CmdType> :{ <CmdResponse> }}}

The packet is made up to 4 parts

request:

1 2 3 4

Static Header Command type JSON object Termination

 brackets

{“req”: { <CmdType> : { <Cmd> } }}

response:
1 2 3 4

Static Header Command type JSON object Termination

 brackets

{“res”: { <CmdType> : { <CmdResponse> } }}

An object is an unordered set of name/value pairs. An object begins with { (left brace) and ends with}
(right brace). Each name is followed by :(colon) and the name/value pairs are separated by, (comma).

{ parameter-name : parameter-value } or
{ parameter-name1 : parameter-value1, parameter-name2 : parameter-value2, … }

Parameter-name is a string in double quotes Parameter-value can be a string in double quotes, or a
number.

A string is a sequence of zero or more Unicode characters, wrapped in double quotes, without using
backslash escapes.

NPxx
CONTROL SPECIFICATIONS: Communication Protocol

 P a g e 4 | 24

Examples:
“myname”, “#£??” or “234abc”

A number is represented as an integer.
Examples:
1, -25 or 2345

Example:
Set the volume at value -30dB. The command to send is {"req":{"set":{"AUVOL":-30}}}

Example:
Set the volume at value -30dB and Line In Mix to OFF.
The command to send is {"req":{"set":{"AUVOL":-30, "AUADMIXON": 0}}}

In the response packet the members include the response of any name/value pair, and could be
present an error indication to specify a problem occurs performing the operation requested.
When the parameter-name was changed or the parameter-name was execute with the indicated value
successfully, the response will be the same content as the original command sent or the follow:
“parameter-name”:”done”

Otherwise, if an error happen when the parameter- name was changed or the parameter-name was
execute with the indicated value, the response will have the “Error” label, in the field packet where the
error occurs.

Example
Set the volume at value -30dB.
The command to send is {"req":{"set":{"AUVOL":-30}}}

The response from the NPxx is {"res":{"set":{"AUVOL":-30}}}

Example:
Set the volume at value -30dB and Line In Mix to OFF.
The command to send is {"req":{"set":{"AUVOL":-30, "AUADMIXON": 0}}}
The response from the NPxx is {"res":{"set":{"AUVOL":-30, "AUADMIXON": 0}}}

Example - wrong command type
Write “fet” in place of “set”

The command to send is {"req":{"fet":{"AUVOL":-30}}}
The response from the NPxx is {"res":{"Error":"No operation in req"}}

Example - wrong command name
Write “AUDIOVOL” in place of “AUVOL”

The command to send is {"req":{"set":{"AUDIOVOL":-30}}}
The response from the NPxx is {"res":{"set":{"AUDIOVOL":"Error - invalid parameter"}}}

NPxx
CONTROL SPECIFICATIONS: Communication Protocol

 P a g e 5 | 24

Request-response packet when you want to know a parameter-names value.
We see haw to set a value for a specific parameter-name. In general, If we want to get from the NPxx
the value of a specific parameter, the name/value pair is parameter-name : “”

Example
Get the volume value.
The command to send is {"req":{"get":{"AUVOL":""}}}
The response from the NPxx is {"res":{"get":{"AUVOL":-30}}}

Example
Get the volume and the Line In Mix values.
The command to send is {"req":{"get":{"AUVOL":"", "AUADMIXON": ""}}}
The response from the NPxx is {"res":{"get":{"AUVOL":-30, "AUADMIXON": 0}}}

User account

The server inside the NPxx device, manage two different accounts: guests and admin.
For both is it possible to customize its login password.
Their default passwords are

guest password = “guest”

admin password = “admin”

The server process one packet at a time, so if the web page is doing dialogue with the device firmware,
in the same time it excludes the possible communication from a TCP-IP or RS485 client. These three
possible communications are exclusive.

From the RS485 communication, it is not necessary to execute a login account.

From the TCP-IP and the web page communications, it is necessary to execute an account login.

If the account is “guest” and its password is “guest” (the default password), in the moment a client
communicates with the NPxx it will open a new account section, without any login phase.
If the guest password is different from its default or the user want to access as an admin, it is necessary
to execute an account login.

TCP-IP communication port

The TCP-IP port number, dedicated to communicating with a client, as request-response protocol, is
11000.
The port number 80 is dedicated to the web pages.

Request-Response protocol

After sent a packet to the NPxx device, before to send a new one, it is necessary to wait for the
relative response.

NPxx
CONTROL SPECIFICATIONS: Communication Protocol

 P a g e 6 | 24

RS485

The RS485 protocol is the same as the TCP-IP except for the termination character and the device ID
field.
This bus must have the carriage return character at the end of the packet to send.

request:
1 2 2 3 4 5

Static Header Device ID Command type JSON object Termination carriage

 brackets return

{“req”: { “IDDEV”:n, <CmdType> : { <Cmd> } }} 0x20 or '\r'

response:
1 2 2 3 4 5

Static Header Device ID Command type JSON object Termination carriage

 brackets return

{“res”: { “IDDEV”:n, <CmdType> : { <CmdResponse> } }} 0x20 or '\r'

Example (Device ID = 3)
Set the volume at value -30dB. The command to send is {"req":{"IDDEV":3, "set":{"AUVOL":-30}}}'\r'

The Device ID is a number in the range between 0 and 252, where the value 0 is used for broadcast
command type.

Example – Set value in any NPxx device connected to the RS485 bus.
Set the volume at value -30dB. The command to send is {"req":{"IDDEV":0, "set":{"AUVOL":-30}}}'\r'

When a broadcast command is received it will be processed, but no response it will be sent to the
client.

The maximum buffer size for a generic packet, as it a request or a response, is 512 bytes.
After sent a packet to the NPxx device, before to send a new one, it is necessary to wait the relative
response.
Pay attention to the “Response delay” parameter, because the NPxx send the response after the time
indicated in this parameter.

From the RS485 communication, it is not necessary to execute a login account.

NPxx
CONTROL SPECIFICATIONS: Communication Protocol

 P a g e 7 | 24

Parameters list

Subset Parameter name Operation
type Description Page

Info

BRANDID get Product name 8
SWVER get Software version 8
HWVER get Hardware Version 8
BLVER get Boot-loader Firmware version 8
SERIALNUM get Product's Serial Number 8
MACADDR get Product's MAC Address 9

Ethernet get, set DHCP, IP address, Net Mask, Gatway ip address, DNS ip
addr 9

Date get, set Read or Write the Date value 11
Time get, set Read or Write the Time value 11
Device
Configuration

DEVFN get, set Set the main functionality: Standard Player, Playlist
Sequence, Advanced Player, Advanced Playlist, Scheduler 11

Login get, set Access as “guest” or “admin” user, or read the login status 12

I/O
Configuration

DIOC get Digital Inputs/Outputs configuration 12
DIBC get, set Number of Inputs/Outputs enabled 13
DISTS get Digital In Status 13
DOSET1,…,DOSET8 get, set Read or Write the status from the Output1 to the Output8 14

Audio Settings

AUVOL get, set Audio Volume 14
AUM get, set Audio Mute: Disable or Auto 14
AUADMIXON get, set Audio Line In Mix value: On or Off 15
AULINL get, set Line In audio level 15
AULINL2 get, set Line In audio level when mixed with audio generated from

the internal processing of NPxx 15

Relay RELSET get, set Read or Write the relay status 16
Sensor SENSON get, set Read or Write the enable sensor status 16

NTP Sync NTPSYNCNOW get, set If NTP service is enabled and configured, it executes an
NTP synchronization 16

SD get Read the SD status 17
Read audio
tracks

 get Read information from the audio tracks inside the SD card 17

Read Playlists get Read information from the playlists inside the SD card 19
Play audio track cmd Manage the standard play functions for an audio track 20
Play Playlist cmd Manage the standard play functions for a playlist 21
Internal
temperature

INTTEMP get Read the internal micro-controller temperature 22

Reset SWRESET set Restart the NPxx device 22
 SUSPENSION get Return the Suspension info status 22
 DATETIME get Return the date and time info in a single formatted string 22

 INFOPLAY get Information about audio track, playlist or scheduler that is
in play in this moment 23

Virtual keypad
 cmd Reproduce the same event you have when you press the

buttons present in the NPxx model: “Previous”, “Stop”,
“Play” and “Next”.

24

Delete File cmd Delete the file indicated in the command 24

NPxx
CONTROL SPECIFICATIONS: Communication Protocol

 P a g e 8 | 24

Parameter name: BRANDID

Operation
Type Values Details and examples

get string Return the product name

Request packet {"req":{"get":{"BRANDID":""}}}
Response {"res":{"get":{"BRANDID":"NP10"}}}

Parameter name: SWVER

Operation

Type Values Details and examples

get String : 3 digits Return the software version installed in the device

Request packet {"req":{"get":{"SWVER":""}}}
Response {"res":{"get":{"SWVER":"3.0.1"}}}

Parameter name: HWVER

Operation

Type Values Details and examples

get String : 2 digits Return the device hardware version

Request packet {"req":{"get":{"HWVER":""}}}
Response {"res":{"get":{"HWVER":"1.0"}}}

Parameter name: BLVER

Operation

Type Values Details and examples

get String: 1 letter and 1
digit

Return the Boot Loader software version

Request packet {"req":{"get":{"BLVER":""}}}
Response {"res":{"get":{"BLVER":"A.3"}}}

Parameter name: SERIALNUM

Operation

Type Values Details and examples

get String: 8 digits Return the device serial number

Request packet {"req":{"get":{"SERIALNUM":""}}}
Response {"res":{"get":{"SERIALNUM":"73700010"}}}

NPxx
CONTROL SPECIFICATIONS: Communication Protocol

 P a g e 9 | 24

Parameter name: MACADDR

Operation
Type Values Details and examples

get String Return the device MAC Address

Request packet {"req":{"get":{"MACADDR":""}}}
Response {"res":{"get":{"MACADDR":"70:B3:D5:FF:90:00"}}}

Parameter name: ETHDHCP

Operation

Type Values Details and examples

get, set Number Read or Write the DHCP propriety in the ethernet setup
0 = DHCP OFF; 1 = DHCP ON

Get
Request packet {"req":{"get":{"ETHDHCP":""}}}
Response {"res":{"get":{"ETHDHCP":1}}}

Set
Request packet {"req":{"set":{"ETHDHCP": 1}}}
Response {"res":{"set":{"ETHDHCP": 1}}}

Parameter name: ETHIPAD

Operation

Type Values Details and examples

get, set String Read or Write the TCP/IP (IPv4) device address

Get
Request packet {"req":{"get":{"ETHIPAD":""}}}
Response {"res":{"get":{"ETHIPAD":"192.168.0.5"}}}

Set
Request packet {"req":{"set":{"ETHIPAD": “192.168.0.5"”}}}
Response {"res":{"set":{"ETHIPAD": “192.168.0.5"”}}}

Parameter name: ETHNM

Operation

Type Values Details and examples

get, set String Read or Write the Net Mask (IPv4) device address

Get
Request packet {"req":{"get":{"ETHNM":""}}}
Response {"res":{"get":{"ETHNM":"255.255.255.0"}}}

Set
Request packet {"req":{"set":{"ETHNM":"255.255.255.0"}}}
Response {"res":{"set":{"ETHNM":"255.255.255.0"}}}

NPxx
CONTROL SPECIFICATIONS: Communication Protocol

 P a g e 10 | 24

Parameter name: ETHGAD

Operation
Type Values Details and examples

get, set String Read or Write the Gateway (IPv4) device address

Get
Request packet {"req":{"get":{"ETHGAD":""}}}
Response {"res":{"get":{"ETHGAD":"192.168.0.1"}}}

Set
Request packet {"req":{"set":{"ETHGAD":"192.168.0.1"}}}
Response {"res":{"set":{"ETHGAD":"192.168.0.1"}}}

Parameter name: ETHDNS1

Operation

Type Values Details and examples

get, set String Read or Write the Primary (IPv4) DNS device address

Get
Request packet {"req":{"get":{"ETHDNS1":""}}}
Response {"res":{"get":{"ETHDNS1":"192.168.0.150"}}}

Set
Request packet {"req":{"set":{"ETHDNS1":"192.168.0.150"}}}
Response {"res":{"set":{"ETHDNS1":"192.168.0.150"}}}

Parameter name: ETHDNS2

Operation

Type Values Details and examples

get, set String Read or Write the Secondary (IPv4) DNS device address

Get
Request packet {"req":{"get":{"ETHDNS2":""}}}
Response {"res":{"get":{"ETHDNS2":"192.168.0.151"}}}

Set
Request packet {"req":{"set":{"ETHDNS2":"192.168.0.151"}}}
Response {"res":{"set":{"ETHDNS2":"192.168.0.151"}}}

NPxx
CONTROL SPECIFICATIONS: Communication Protocol

 P a g e 11 | 24

Parameter name: Date

Operation
Type Values Details and examples

get, set Numbers
RTCCY = Year [20xx]
RTCCM = Month [1,..,12]
1=January,..,12=December

RTCCD = Day [1,..,31]
RTCCWD = Week Day
[1,..7]
1=Monday,..,7=Sunday

Read or Write the RTC clock date

Get
Request packet
{"req":{"get":{"RTCCY":"","RTCCM":"","RTCCD":"","RTCCWD":""}}}
Response
{"res":{"get":{"RTCCY":2017,"RTCCM":11,"RTCCD":2,"RTCCWD":4}}}
 Thursday, 2nd November 2017

Set
Request packet
{"req":{"set":{"RTCCY":2017,"RTCCM":11,"RTCCD":2,"RTCCWD":4}}}
Response
{"res":{"set":{"RTCCY":2017,"RTCCM":11,"RTCCD":2,"RTCCWD":4}}}

Parameter name: Time

Operation

Type Values Details and examples

get, set Numbers
RTCCHH = Hours [0,..,23]

RTCCMM = Minutes[0,..,59]
RTCCSS = Seconds [0,..,59]

Read or Write the RTC clock time

Get
Request packet {"req":{"get":{"RTCCHH”:"","RTCCMM":"","RTCCSS":""}}}
Response {"res":{"get":{"RTCCHH":11,"RTCCMM":32,"RTCCSS":20}}}
 11:32:20

Set
Request packet {"req":{"set":{"RTCCHH":11,"RTCCMM":32,"RTCCSS":20}}}
Response {"res":{"set":{"RTCCHH":11,"RTCCMM":32,"RTCCSS":20}}}

Parameter name: Device Configuration

Operation

Type Values Details and examples

get, set Number

DEVFN: device
function
0 = Standerd Player
1 = Playlist Sequence
2 = Advanced Player
3 = Advanced Playlist
4 = Scheduler

Device function, set the main functionality of NPxx.
When changed, is suggested to read the status and the others parameters
managed in that moment.
This command must be send alone, because the NPxx device change a lot of things
inside itself and require 2 seconds to done it.

Get
Request packet {"req":{"get":{"DEVFN":""}}}
Response {"res":{"get":{"DEVFN":2}}} Advanced Player

Set
Request packet {"req":{"set":{"DEVFN": 4}}} Scheduler
Response {"res":{"set":{"DEVFN": 4}}}

NPxx
CONTROL SPECIFICATIONS: Communication Protocol

 P a g e 12 | 24

Parameter name: Login

Operation
Type Values Details and examples

get, set String

LOGINTYPE:
account type
[guest, admin]

LOGINPWD
Password string for
guest
or admin

LOGOUT
The login status
has a timeout of 10
minutes, without
any operation

Read the Login status or make the account access

Default passwords for the two possible accounts are: “guest” for the “guest” account;
“admin” for the “admin” accounts
If the account “guest” has its default password, the login become immediately,
without any password request.

Get
Request packet {"req":{"get":{"LOGINTYPE":""}}}
Response
 {"res":{"get":{"LOGINTYPE":"admin"}}}
or {"res":{"get":{"LOGINTYPE":"guest"}}} if user is logged
or {"res":{"get":{"LOGINTYPE":"none"}}} if the user is not logged and the “guest”
 account has a password

Set – login as “guest”, with password = “sS25k#Hc57”
Request packet {"req":{"set":{"LOGINTYPE":"guest", "LOGINPWD":"sS25k#Hc57"}}}
Response
 Login successfully {"res":{"set":{"LOGINTYPE":"guest"}}}
 or Wrong Password {"res":{"set":{"LOGINTYPE":"none"}}}

The same example for the “admin” login type:
 {"req":{"set":{"LOGINTYPE":"admin", "LOGINPWD":"Avk34c67"}}}

Login successfully
 {"res":{"set":{"LOGINTYPE":"admin"}}}
or Wrong Password
 {"res":{"set":{"LOGINTYPE":"none"}}}

Set – logout
Request packet {"req":{"set":{"LOGOUT":""}}}
Response {"res":{"set":{"LOGOUT":""}}}

Parameter name: DIOC

Operation

Type Values Details and examples

get Number

Digital
Inputs/Outputs
configuration

[0,..,255]

Read the Input/Output configuration.
There are 8 configurable I/O, each one can be defined as input or output. A byte,
defined from 8 bits, explain the 8 I/O configurations:
0 = output
1 = input
In the following order little-endian:
I/O8 – I/O7 - I/O6 - I/O5 - I/O4 - I/O3 - I/O2 – I/O1

Example: I/O7, I/O3 and I/O2 defined as outputs and the others as inputs, the byte
configuration will be 10111001b = B9H = 185
Get
Request packet {"req":{"get":{"DIOC":""}}}
Response {"res":{"get":{"DIOC":185}}}

NPxx
CONTROL SPECIFICATIONS: Communication Protocol

 P a g e 13 | 24

Parameter name: DIBC

Operation
Type Values Details and examples

get, set Number

Number of
Inputs/Outputs
enabled
[1,..,8]

Read or Write the number of I/O enabled. Only the I/O enabled can be set, if they are
in outputs, or read the input level, if they are defined as inputs (read also the DIOC
parameter). At minimum it is possible to set only one I/O enabled.
The number of I/O enabled start from the I/O1 and proceed in great order.

Example: 3 I/O enabled
I/O1, I/O2 and I/O3 are enabled, the others I/Os are disabled DIBC parameter is
available only when NPxx is configured as “Advanced Player” or “Advanded Playlist”

Get
Request packet {"req":{"get":{"DIBC":""}}}
Response {"res":{"get":{"DIBC":4}}}
I/O enabled are: I/O1 - I/O2 - I/O3 – I/O4

Set
Request packet {"req":{"set":{"DIBC": 4}}}
Response {"res":{"set":{"DIBC": 4}}}

Parameter name: DISTS

Operation

Type Values Details and examples

get Number

Digital In Status
0 = Low
1 = High

Read the I/O status for the I/O defined as inputs (read also the DIOC parameter).
0 = Low
1 = High
They are logical status, because in the I/O configuration web page it is possible to
invert the digital level value. The I/O defined as Outputs return the correspond bit at
zero value.

Example: I/O7, I/O3 and I/O2 are defined as outputs and the others as inputs. In

I/O8, and I/O6 have an high input level and a low level in the other inputs. Any I/O

has the inversion level mask disabled except for the I/O1.

I/O7, I/O3, I/O2 = 0 because they are outputs
I/O8, I/O6 = 1 because they have an high input level
I/O5, I/O4 = 0 because they have a low input level
I/O1 = 1 because it has a low input level, but its inversion level mask is
 enabled The returned byte is: 10100001b = A1H = 161

Get
Request packet {"req":{"get":{"DISTS":""}}}
Response {"res":{"get":{"DISTS":161}}}

NPxx
CONTROL SPECIFICATIONS: Communication Protocol

 P a g e 14 | 24

Parameter name: DOSET1,…,DOSET8

Operation
Type Values Details and examples

get, set Number

Read or Write the
status from the
Output1 to the
Output8

0 = Low
1 = High

Read the I/O status for the I/O defined as outputs (read also the DIOC parameter).
0 = Low
1 = High
They are logical status, because in the I/O configuration web page it is possible to
invert the digital level value. The I/O defined as Inputs return a value equal to zero.
DIOSET1 correspond to the I/O1. The same logical for the others.

Get
Request packet {"req":{"get":{"DOSET1":""}}}
Response {"res":{"get":{"DOSET1":1}}}

Set
Request packet {"req":{"set":{"DOSET1": 1}}}
Response {"res":{"set":{"DOSET1": 1}}}

Parameter name: AUVOL

Operation

Type Values Details and examples

get, set Number
Read or Write the
audio volume

The audio volume has a rage of values from 0dB to -64dB.
The 0dB correspond to the maximum value. The minimum regulation step is 1.
Get
Request packet {"req":{"get":{"AUVOL":""}}}
Response {"res":{"get":{"AUVOL":-20}}}

Set
Request packet {"req":{"set":{"AUVOL": -32}}}
Response {"res":{"set":{"AUVOL": -32}}}

Parameter name: AUM

Operation

Type Values Details and examples

get, set Number
Audio Mute
0 = Disable
(1 = reserved)
2 = Auto

Manage the audio Mute propriety: Amplifier module; Line In and DSP processing.
Disable: the audio is changed through the single devices setup:
Amplifier module; Line In and DSP processing.
Auto: mute propriety is activated when there aren't any audio DSP processing over 2
seconds and Line In is disabled.

Get
Request packet {"req":{"get":{"AUM":""}}}
Response {"res":{"get":{"AUM": 2}}}

Set
Request packet {"req":{"set":{"AUM": 0}}}
Response {"res":{"set":{"AUM": 0}}}

NPxx
CONTROL SPECIFICATIONS: Communication Protocol

 P a g e 15 | 24

Parameter name: AUADMIXON

Operation
Type Values Details and examples

get, set Number

Audio Line In Mix
status
0 = Disable
1 = Enable

Read or Write the Audio Line In Mix status.
0 = Disable
1 = Enable
When enabled the NPxx mix the audio coming from the Line In and the audio
processing from the internal DSP.

Get
Request packet {"req":{"get":{"AUADMIXON":""}}}
Response {"res":{"get":{"AUADMIXON": 0}}}

Set
Request packet {"req":{"set":{"AUADMIXON": 1}}}
Response {"res":{"set":{"AUADMIXON": 1}}}

Parameter name: AULINL

Operation

Type Values Details and examples

get, set Number

Line In audio level
[-3,..,-31]

Read or Write the Line In audio level.
Minimum value is -31dB. Maximum level is -3dB.

Get
Request packet {"req":{"get":{"AULINL":""}}}
Response {"res":{"get":{"AULINL": -12}}}

Set
Request packet {"req":{"set":{"AULINL": -5}}}
Response {"res":{"set":{"AULINL": -5}}}

Parameter name: AULINL2

Operation

Type Values Details and examples

get, set Number

Line In audio level
Mix
[-3,..,-31]

Line In audio level when mixed with audio generated from the internal DSP
processing.
As for the Line In audio Level, the Minimum value is -31dB and the Maximum level is -
3dB. But, for this mix level, its level must be less than the value of Line In audio Level:
Line In audio level > Line In audio level Mix

Get
Request packet {"req":{"get":{"AULINL2":""}}}
Response {"res":{"get":{"AULINL2": -7}}}

Set
Request packet {"req":{"set":{"AULINL2": -10}}}
Response {"res":{"set":{"AULINL2": -10}}}

NPxx
CONTROL SPECIFICATIONS: Communication Protocol

 P a g e 16 | 24

Parameter name: RELSET

Operation
Type Values Details and examples

get, set Number

Relay Status
0 = Off
1 = On

Read or Write the Relay status.

This is the Relay logic value, because in the Relay settings web page, there is the
“Logics” parameter, with possible value of “Normal or “Inverted”, that confirm or
invert the physical value.

Warning: when the relay is activated, pay attention if the relative driven hardware can
tolerate this condition.

Get
Request packet {"req":{"get":{"RELSET":""}}}
Response {"res":{"get":{"RELSET": 0}}}
 Relay has logical value Off

Set
Request packet {"req":{"set":{"RELSET": 1}}}
Response {"res":{"set":{"RELSET": 1}}}

Parameter name: SENSON

Operation

Type Values Details and examples

get, set Number

Sensor
0 = Disable
1 = Enable

Read or Write the sensor status.

Get
Request packet {"req":{"get":{"SENSON":""}}}
Response {"res":{"get":{"SENSON": 0}}}
 Sensor status is disabled

Set: enable the sensor functions
Request packet {"req":{"set":{"SENSON": 1}}}
Response {"res":{"set":{"SENSON": 1}}}

Parameter name: NTPSYNCNOW

Operation

Type Values Details and examples

set Number

Execute the NTP synchronization, to the specified server in the “Date&Time settings”
web page. This operation start only if the NTP services is enabled.

After this command it is necessary to wait 5 seconds, in order to conclude the sync
process.

Set
Request packet {"req":{"set":{"NTPSYNCNOW": 1}}}
Response {"res":{"set":{"NTPSYNCNOW": 1}}}

NPxx
CONTROL SPECIFICATIONS: Communication Protocol

 P a g e 17 | 24

Parameter name: SD

Operation
Type Values Details and examples

get Number

0 = unplugged
1 = plugged

Read the micro SD status:
- Plugged or not
- SD size [Kbyte]
- SD size free [KByte]

Get
Request packet {"req":{"get":{"SDPRESENT":"","SDSIZE":"","SDFREE":""}}}

Response {"res":{"get":{"SDPRESENT": 1,"SDSIZE": 3922,"SDFREE": 1082}}}
Micro SD is plugged. It has a total size of 3922KByte, that 1082Kbyte are free.

Parameter name: Read music audio tracks

Operation

Type Values Details and examples

get Strings
This command
return the list of
audio files inside
the directory
“music”

Suppose that in the SD card there are N audio files, in the “music” directory.

Request packet {"req":{"get":{"MUSIC_ITEMS":""}}}
Response {"res":{"get":{"MUSIC_ITEMS": [{<info file 1>},..,{<info file N>}]}}}

The generic <info file J> has the information regarding the generic audio file at
position number J, in the file system, inside the micro SD card.

<info file J> = "<file-nameJ>": [LJ, GJ, “<artistJ>”, “<titleJ>”,”<albumJ>”]
<file-nameJ> = file-name of audio file at position number J, inside the micro SD card

LJ = length in seconds of this audio file, with name = file-name
GJ = Genre index of this audio file, with name = file-name. See the list in the Appendix
1

<artistJ> = Artist's name of this audio file, with name = file-name
<titleJ> = Title of this audio file, with name = file-name
<albumJ> = Album of this audio file, with name = file-name

There are some limits in the maximum length for the strings about the file-name, the
artist, the title and the album. If they will exceeds these limits, the string will be cut
out with the character "@". This character is also used when the Id3tag value is
empty. Maximum length for the strings:

Max_File_Name_Length = 50
Max_Artist_Length = 30
Max_Title_Length = 50
Max_Album_Length = 30

The maximum TCP-IP payload buffer length, that could be received, from the NPxx
device, is 1024 bytes.

The maximum TCP-IP payload buffer length, that could be be transmit, from the NPxx
device, is 1400 bytes.

NPxx
CONTROL SPECIFICATIONS: Communication Protocol

 P a g e 18 | 24

If the data [{<info file 1>},..,{<info file N>}] exceed the 1400 bytes, it will be sent using
more than one packets.

For example, if the number of files which info could be contained in 1400 bytes are
136, the first received packet has these contents:

{"res":{"get":{"MUSIC_ITEMS": [{<info file 1>},..,{<info file 135>}], "NEXT": 136}}}

In order to have the other music files info, it is necessary send a new request with
these contents:
{"req":{"get":{"MUSIC_ITEMS":"", "NEXT", 136}}}

With this new request, the user ask to the NPxx to send the music file info from the
next file with index equal to 136, in the file system. This process could continue for
different packets until you receive one without the object "NEXT", N , where N is a
number.

Example: there are 2 audio files in the SD card: “time.mp3” and “ White As now.mp3”.

Request packet {"req":{"get":{"MUSIC_ITEMS":""}}}
Response {"res":{"get":{"MUSIC_ITEMS": [
 {"time.mp3": [224, 13, "Culture Club","Time (Clock of the Heart)","The Best"]},
 {"White As Snow.mp3": [281, 17, "U2","White As Snow", "No line on the horizon"]}]
}}}

Parameter name: Read spot audio tracks

Operation

Type Values Details and examples

get Strings
This command
return the list of
audio files inside
the “spot”
directory

Same roles and process described in the command for “Read music audio track”, but
change the command name.

Request packet {"req":{"get":{"SPOT_ITEMS":""}}}
Response {"res":{"get":{"SPOT_ITEMS": [{<info file 1>},..,{<info file N>}] }}}

Parameter name: Read sensor audio tracks

Operation

Type Values Details and examples

get Strings
This command
return the list of
audio files inside
the “sensor”
directory

Same roles and process described in the command for “Read music audio track”, but
change the command name.

Request packet {"req":{"get":{"SENSOR_ITEMS":""}}}
Response {"res":{"get":{"SENSOR_ITEMS": [{<info file 1>},..,{<info file N>}] }}}

NPxx
CONTROL SPECIFICATIONS: Communication Protocol

 P a g e 19 | 24

Parameter name: Read Playlists

Operation
Type Values Details and examples

get Strings
This command
return the list of
playlist files inside
the directory
“playlist”

Get
Request packet {"req":{"get":{"PL_ITEMS":""}}}
Response {"res":{"get":{"PL_ITEMS": [{<info PL file 1>},..,{<info PL file N>}] }}}

The generic <info PL file J> has the information regarding the generic playlist file at
position number J, in the file system, inside the micro SD
card.
<info PL file J> = "<PL file-nameJ>": [LJ]
<PL file-nameJ> = file-name of playlist file at position number J, inside the micro SD
card
LJ = length in seconds of this playlist file, with name = PL file-name
The maximum length for the file-name are 50 characters. If it will exceeds these limit,
the string will be cut out with the character "@".
If the data [{<info PL file 1>},..,{<info PL file N>}] exceed the 10KByte, it will be sent
using more than one packets, as described in the
“MUSIC_ITEMS” command.
Example: there are 3 playlist files in the SD card: “Culture Club.m3u”, “The
Police.m3u” and “U2 No Line on Horrizon.m3u”.
Request packet {"req":{"get":{"PL_ITEMS":""}}}

Response {"res":{"get":{"PL_ITEMS": [{"Culture Club.m3u": [3695]},{"The
Police.m3u": [3307]},{"U2 No Line on Horrizon.m3u": [3227]}] }}}
With a different layout, the response packet is
{"res":{"get":{"PL_ITEMS":
 [
 {"Culture Club.m3u": [3695]},
 {"The Police.m3u": [3307]},
 {"U2 No Line on Horrizon.m3u": [3227]}
]
}}}

NPxx
CONTROL SPECIFICATIONS: Communication Protocol

 P a g e 20 | 24

Parameter name: Play audio track

Operation
Type Values Details and examples

cmd String

This command
manage the play
functions of an
audio file, inside
the
directories
“music”, “spot”
and “sensor”.

Pause
Play
Stop
playonly

This command has 3 parameters:

"TYPE": type of command = “play”, “stop”, “pause”
"FILE_TYPE": system directory where the file in stored = "music", “spot”, “sensor”
"TRACK_NAME": the name of audio file; file-name and extension (“mp3”).

Example
Play the file “time.mp3”, present in the system directory “music”

Request packet {"req":{"cmd":{"TYPE":"play", "FILE_TYPE": "music",
 "TRACK_NAME": “time.mp3”}}}
Response {"res":{"cmd":”done”}}

Example
Stop the audio file in play.
Request packet {"req":{"cmd":{"TYPE":"stop"}}}
Response {"res":{"cmd":”done”}}

Example
Pause the audio file in play.
Request packet {"req":{"cmd":{"TYPE":"pause"}}}
Response {"res":{"cmd":”done”}}

At the end of audio file, present in the command, the player continue to play with the
next file in its file system.

playonly
At the end of audio file, present in the command, the player stops to produce any
audio and wait an user command or event

Request packet {"req":{"cmd":{"TYPE":"playonly", "FILE_TYPE": "music",
 "TRACK_NAME": “time.mp3”}}}
Response {"res":{"cmd":”done”}}

NPxx
CONTROL SPECIFICATIONS: Communication Protocol

 P a g e 21 | 24

Parameter name: Play playlist

Operation
Type Values Details and examples

cmd String

This command
manage the play
functions of a
playlist file, inside
the
directory “playlist”

Pause
Play
Stop
Rewind
startplaylistonly

This command has 3 parameters:

"TYPE": type of command = “startplaylist”, “stop”, “pauseplaylist”, “rewind”
"FILE_TYPE": system directory where the file in stored. For the playlist the value must
be “playlist”.
"PL_NAME": the name of playlist file; file-name and extension (“m3u”).
Before to execute the “rewind” function, if the same playlist is in play, it will be
stopped.

Example
Start to play the playlist file “Culture Club.m3u”.
Request packet {"req":{"cmd":{"TYPE":"startplaylist", "FILE_TYPE": "playlist",
 "PL_NAME": “Culture Club.m3u”}}}
Response {"res":{"cmd":”done”}}

Example
Put in pause the playlist file “Culture Club.m3u”.
Request packet {"req":{"cmd":{"TYPE":"pauseplaylist", "FILE_TYPE": "playlist",
 "PL_NAME": “Culture Club.m3u”}}}
Response {"res":{"cmd":”done”}}

Example
Stop to play the current playlist in play.
Request packet {"req":{"cmd":{"TYPE":"stop"}}}
Response {"res":{"cmd":”done”}}

Example
Rewind the playlist “Culture Club.m3u”.
Request packet {"req":{"cmd":{"TYPE":"rewplaylist", "FILE_TYPE": "playlist",
 "PL_NAME": “Culture Club.m3u”}}}
Response {"res":{"cmd":”done”}}

At the end of Playlist file, present in the command, the player continue to play with
the next playlist file in its file system

startplaylistonly
At the end of last audio file, inside the Playlist present in the command, the player
stops to produce any audio and wait an user command or event

Example
Rewind the playlist “Culture Club.m3u”.
Request packet {"req":{"cmd":{"TYPE":" startplaylistonly", "FILE_TYPE":"playlist",
 "PL_NAME": “Culture Club.m3u”}}}
Response {"res":{"cmd":”done”}}

NPxx
CONTROL SPECIFICATIONS: Communication Protocol

 P a g e 22 | 24

Parameter name: INTTEMP

Operation
Type Values Details and examples

get Number

Internal Micro-
controller
temperature

Read the internal micro-controller temperature.
In comparison to the external chassis temperature (ambient), could be a difference of
10 °C.

Request packet {"req":{"get":{"INTTEMP": ""}}}
Response {"res":{"get":{"INTTEMP": 26}}}
The internal micro-controller temperature is equal to 26°C

Parameter name: SWRESET

Operation

Type Values Details and examples

set Execute a software reset inside the NPxx device.
This command restart the NPxx device.

Request packet {"req":{"set":{"SWRESET": 1}}}
Response {"res":{"set":{"SWRESET": 1}}}

Parameter name: SUSPENSION

Operation

Type Values Details and examples

get Return the Suspension info status. This is a possible state in Scheduler mode, with
Digital I/O Mode in “Priority Message”.

In “Priority Message” status, the I/O #8 have a particular role: if it is activated it
suspend the present scheduler until it will be disactivated. This particular status could
be monitored with the SUSPENSION command:
{"req":{"get": {"SUSPENSION": ""}}}

The response could be have 2 possible values: 0 = not suspended; 1 = suspension
status is on

Parameter name: DATETIME

Operation

Type Values Details and examples

get Return the date and time info in a single formatted string

Request packet {"req":{"get": {"DATETIME": ""}}}

Response {"res":{"get":{"DATETIME":"2021-01-15,08:06:52"}}}

NPxx
CONTROL SPECIFICATIONS: Communication Protocol

 P a g e 23 | 24

Parameter name: INFOPLAY

Operation
Type Values Details and examples

get Return JSON object
with values as
string and
numbers.
In general, this
command return
the information
about audio track,
playlist or
scheduler that is in
play in this
moment. If one or
more of these
elements are not
in play, the relative
key-value will be
empty.

Request packet {"req":{"get": {"INFOPLAY": ""}}}

The generic response is
{"res":{"get": {"INFOPLAY": {"status":<status>,"scheduler":<scheduler name>,
 "playlist":<playlist name>, "trackname":<audio track name>,
 "trackinfo": [<Len>,<genre>,<artist>,<title>,<album>] }}}}}

Where <status > could have these values: ["stop", "play", "pause", "suspension" (this
last one only in scheduler mode)]
 <Len> is the song’s length, in seconds
The key-values <scheduler name> and <playlist name> could be empty in cases the
Device Configuration does not have these elements, like in StandardPlayer and
AdvancePlayer modes. In PlaylistSequence or AdvancePlaylist could be empty the
<scheduler name> value. In the other cases, the "scheduler", "playlist" and
"trackname" have the name that Player has in focus, or ready to play.

In case no audio track is in play, the response is
{"res":{"get":{"INFOPLAY":{"status":"stop"}}}}

If Device Configuration is Standard Player, and the audio track "A church is
burning.mp3" is in play, the response is:
 {"res":{"get": {"INFOPLAY": {"status":"play","scheduler":"","playlist":"",
 "trackname": "A church is burning.mp3",
 "trackinfo": [203,80,"Simon e Garfunkel","A church is burning","The essential
CD02"]}}}}

In the same case, but with Device Configuration equal to AdvancePlaylist, the
response is:
{"res":{"get": {"INFOPLAY": {"status":"play","scheduler":"","playlist":
"my_simon_PL.m3u",
 "trackname": "A church is burning.mp3",
 "trackinfo": [203,80,"Simon e Garfunkel","A church is burning","The essential
CD02"]}}}}

If we are in scheduler mode, the response is:
 {"res":{"get": {"INFOPLAY": {"status":"play","scheduler":"MyFavouriteSongs",
 "playlist": "my_simon_PL.m3u",
 "trackname": "A church is burning.mp3",
 "trackinfo": [203,80,"Simon e Garfunkel","A church is burning","The essential
CD02"]}}}}

In Scheduler, if is in play an audio spot, the response is:
 {"res":{"get": {"INFOPLAY": {"status":"play","scheduler":"From Wednesday2Sunday",
 "playlist": "", "trackname": "spotLavazza.mp3",
 "trackinfo": [15,10,"Lavazza","LavazzaCremaGusto","Lavazza2"]}}}}

NPxx
CONTROL SPECIFICATIONS: Communication Protocol

 P a g e 24 | 24

Parameter name: Virtual keypad

Operation
Type Values Details and examples

cmd These commands reproduce the same event you have when you press the buttons
present in the NP10 model: “Previous”, “Stop”, “Play” and “Next”.
If no audio file is in play the Previous become Audio-Decrement and Next become
Audio-Increment.
The functionality of any virtual key (“Previous”, “Stop”, “Play” and “Next”) is
associated to the relative Device Configuration activated.

{"req":{"cmd":{"TYPE":"VKPprev"}}}
{"req":{"cmd":{"TYPE":"VKPstop"}}}
{"req":{"cmd":{"TYPE":"VKPplay"}}}
{"req":{"cmd":{"TYPE":"VKPnext"}}}

For any of these commands the response is: {"res":{"cmd":{"retmsg":"done"}}}

Parameter name: Delete File

Operation

Type Values Details and examples

cmd Delete the file indicated in the command.

The generic JSON command is

{"req": {"cmd": {"TYPE": "deletefile", "FILE_TYPE": <type>, "FILE_NAME": <name> }}}
Where
<type> is a string and its possible value are ["music", "playlist", "sensor", "spot",
"scheduler"]
<name> is a string indicated the file name to delete, including its extension.

The "FILE_TYPE" field indicate where to find the file name.

Example: delete "myaudio.mp3" file in the “music” directory
{"req": {"cmd": {"TYPE": "deletefile", "FILE_TYPE": "music", "FILE_NAME":
"myaudio.mp3"}}}

Example: delete "myspot.mp3" file in the “spot” directory
{"req": {"cmd": {"TYPE": "deletefile", "FILE_TYPE": "spot", "FILE_NAME":
"myspot.mp3"}}}

Example: delete "mysensoraudiofile.mp3" file in the “sensor” directory
{"req": {"cmd": {"TYPE": "deletefile", "FILE_TYPE": "sensor", "FILE_NAME":
"mysensoraudiofile.mp3"}}}

Example: delete "myplaylist.m3u" file in the “playlist” directory
{"req": {"cmd": {"TYPE": "deletefile", "FILE_TYPE": " playlist", "FILE_NAME":
"myplaylist.m3u"}}}

Example: delete "myscheduler.txt" file in the “scheduler” directory
{"req": {"cmd": {"TYPE": "deletefile", "FILE_TYPE": "scheduler", "FILE_NAME": "
myscheduler.txt"}}}

Pay attention: the scheduler file, in the scheduler web page, is showed without the file
extension “txt”, but it is present in the player’s file system.

WARNING:
The delete function could be very critical, because you can delete files inside playlists
or schedulers, compromising its behaviors and correct executions.

